Hello QCUP Scripts
Overview
This page contains example “Hello World!” scripts for each Quantum Computing User Program (QCUP) vendor. Although a given vendor may have various access options (see Quantum Systems), this page showcases how to run jobs in a local scripting environment.
Warning
Installation instructions for the software packages needed to run each script are not provided here.
Example pip
and conda
syntax for each package can be found on our Quantum Software on HPC Systems Page.
IBM Quantum
Qiskit provides access to the IBM backends.
For more information please see:
|
|
|
|
---|---|---|---|
3.11.9 |
1.2.0 |
0.28.0 |
0.14.2 |
Note
Your IBMQ API Token is listed on your IBM dashboard at https://quantum-computing.ibm.com/.
from qiskit import QuantumCircuit, transpile
from qiskit_ibm_runtime import QiskitRuntimeService, Session, SamplerV2 as Sampler
import time
# Save / Load Credentials (csc431 used as example project)
QiskitRuntimeService.save_account(channel="ibm_quantum", token="API TOKEN GOES HERE", overwrite=True)
service = QiskitRuntimeService(channel="ibm_quantum", instance="ibm-q-ornl/ornl/csc431")
# Get backend (csc431 used as example project)
#backend = service.backend("backend_name_here", instance="ibm-q-ornl/ornl/csc431")
backend = service.least_busy(simulator=False, operational=True)
# Build circuit
circuit = QuantumCircuit(2, 2)
circuit.h(0)
circuit.cx(0, 1)
circuit.measure([0,1], [0,1])
compiled_circuit = transpile(circuit, backend)
# Submit job
sampl = Sampler(mode=backend)
job = sampl.run([compiled_circuit],shots=1000)
# Wait for job to complete
while str(job.status()) != "DONE":
print("Job status is", job.status() )
time.sleep(30)
print("Job status is", job.status() )
# Gather results
result = job.result()
probs = result[0].data.c.get_counts()
print('PubResult: ',result[0])
print("\nProbabilities for 00 and 11 are:",probs)
# Draw the circuit
print(circuit.draw())
from qiskit import QuantumCircuit, transpile
from qiskit_ibm_runtime import Session, SamplerV2 as Sampler
from qiskit_ibm_runtime.fake_provider import FakeManilaV2
from qiskit_aer import AerSimulator
# Get local backend
#backend = FakeManilaV2()
backend = AerSimulator()
# Build circuit
circuit = QuantumCircuit(2, 2)
circuit.h(0)
circuit.cx(0, 1)
circuit.measure([0,1], [0,1])
compiled_circuit = transpile(circuit, backend)
# Run the sampler job locally using AerSimulator or "Fake" Backend.
# Session syntax is supported but ignored because local mode doesn't support sessions.
with Session(backend=backend) as session:
sampler = Sampler(mode=session)
result = sampler.run([compiled_circuit],shots=1000).result()
probs = result[0].data.c.get_counts()
print('PubResult: ',result[0])
print("\nProbabilities for 00 and 11 are:",probs)
# Draw the circuit
print(circuit.draw())
After running the above script(s), you should see something similar to:
Probabilities for 00 and 11 are: [{0: 0.51, 3: 0.49}]
┌───┐ ┌─┐
q_0: ┤ H ├──■──┤M├───
└───┘┌─┴─┐└╥┘┌─┐
q_1: ─────┤ X ├─╫─┤M├
└───┘ ║ └╥┘
c: 2/═══════════╩══╩═
0 1
Quantinuum
The tket framework is a software platform for the development and execution of gate-level quantum computation, providing state-of-the-art performance in circuit compilation. Pytket is a python module for interfacing with tket, and installing the Quantinuum pytket extension allows pytket circuits to be executed on Quantinuum’s quantum devices.
For more information please see:
|
|
|
---|---|---|
3.11.9 |
1.31.1 |
0.37.0 |
from pytket.circuit import Circuit
from pytket.extensions.quantinuum import QuantinuumBackend
from pytket.backends import ResultHandle
from pytket.backends.backendresult import BackendResult
import json
import time
# Build the circuit
circuit = Circuit(2, name="Bell Test")
circuit.H(0)
circuit.CX(0, 1)
circuit.measure_all()
# Choose your machine and login (e.g., H1-1E and CSC431 group)
machine = "H1-1E"
backend = QuantinuumBackend(device_name=machine, group="CSC431")
backend.login()
# Status of desired machine
print(machine, "status:", QuantinuumBackend.device_state(device_name=machine))
# List available devices
print([x.device_name for x in QuantinuumBackend.available_devices()])
# Compile circuit
compiled_circuit = backend.get_compiled_circuit(circuit, optimisation_level=0)
n_shots = 100
# Estimate the cost (H1-1SC, H2-1SC are syntax checkers for H1-1 and H2-1)
# Causes problems when on an HPC compute node w/ proxy settings -- advised to run separately on login node w/o proxy
#backend.cost(compiled_circuit, n_shots=n_shots, syntax_checker="H1-1SC")
# Run the circuit
handle = backend.process_circuit(compiled_circuit, n_shots=n_shots)
print(handle)
# Save your job handle
with open("pytket_example_job_handle.json", "w") as file:
json.dump(str(handle), file)
# Check status of job (loop is necessary on an HPC compute node w/ proxy settings or else timeouts occur)
while str( backend.circuit_status(handle).status ) != "StatusEnum.COMPLETED":
status = backend.circuit_status(handle)
print("Job status is", status.status )
time.sleep(10)
status = backend.circuit_status(handle)
print("Job status is", status )
# Retrieve and print results
with open("pytket_example_job_handle.json") as file:
handle_str = json.load(file)
handle = ResultHandle.from_str(handle_str)
result = backend.get_result(handle)
print(result.get_distribution())
print(result.get_counts())
# Save results
with open("pytket_example.json", "w") as file:
json.dump(result.to_dict(), file)
# Not necesary here, but including syntax
# Load results
with open("pytket_example.json") as file:
data = json.load(file)
result = BackendResult.from_dict(data)
After running the above script, you should see something similar to:
{(0, 0): 0.57, (1, 1): 0.43}
Counter({(0, 0): 57, (1, 1): 43})
IonQ
IonQ has many pathways to accessing their quantum backends. Although the script below uses the Qiskit IonQ Provider , details on how to use Cirq, PennyLane, XACC, and more can be found in the IonQ Documentation . One useful resource that showcases multiple access pathways is their Hello Many Worlds tutorial.
For more information please see:
|
|
|
---|---|---|
3.11.9 |
1.2.0 |
0.5.4 |
from qiskit import QuantumCircuit
from qiskit_ionq import IonQProvider
import os
# Set your credentials (can also set this externally)
os.environ["IONQ_API_KEY"] = "API KEY GOES HERE"
# Load your IonQ credentials and list backends
provider = IonQProvider()
print(provider.backends())
# Run on "ionq_simulator", "ionq_qpu", "simulator", "qpu.harmony", "qpu.aria-1", "qpu.aria-2"
backend = provider.get_backend("simulator")
# Create a basic Bell State circuit:
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])
# Run the circuit on IonQ's platform:
job = backend.run(qc, shots=10000)
# Print results
print(job.get_counts())
print(job.get_probabilities())
After running the above script, you should see something similar to:
{'00': 4933, '11': 5067}
{'00': 0.5, '11': 0.5}
IQM
An IQM+Qiskit plugin provides access to IQM backends.
For more information please see:
Note
Your IQM API Token is listed on your IQM Resonance dashboard at https://resonance.meetiqm.com/.
|
|
|
---|---|---|
3.11.11 |
1.1.2 |
15.5 |
from iqm.qiskit_iqm import IQMProvider, transpile_to_IQM
from qiskit import QuantumCircuit
# Backend to connect to (e.g., Garnet's algorithm checker)
server_url = "https://cocos.resonance.meetiqm.com/garnet:mock"
# Authentication token (alternatively can set the IQM_TOKEN environment variable)
api_token = "PUT TOKEN HERE"
SHOTS = 100
# Define quantum circuit
num_qb = 5
qc = QuantumCircuit(num_qb)
qc.h(0)
for qb in range(1, num_qb):
qc.cx(0, qb)
qc.barrier()
qc.measure_all()
# Initialize backend
backend = IQMProvider(server_url, token=api_token).get_backend()
# Transpile circuit
qc_transpiled = transpile_to_IQM(qc, backend)
print(qc_transpiled.draw(output="text"))
# Run circuit
job = backend.run(qc_transpiled, shots=SHOTS)
print(job.result().get_counts())
After running the above script, you should see something similar to:
{'10101': 25, '11111': 23, '01010': 24, '00000': 28}
Note
The mock system used here is only for testing your algorithm. It will compile your code for the instruments of an IQM quantum computer. However, as no actual instruments are connected to the Mock environment, it will only yield random results – this is not a simulator. See facade backends for an alternative option.