Hello QCUP Scripts

Overview

This page contains example “Hello World!” scripts for each Quantum Computing User Program (QCUP) vendor. Although a given vendor may have various access options (see Quantum Systems), this page showcases how to run jobs in a local scripting environment.

Warning

Installation instructions for the software packages needed to run each script are not provided here. Example pip and conda syntax for each package can be found on our Quantum Software on HPC Systems Page.

IBM Quantum

Qiskit provides access to the IBM backends.

For more information please see:

Latest script tests

python

qiskit

qiskit-ibm-runtime

qiskit-aer

3.11.9

1.2.0

0.28.0

0.14.2

Note

Your IBMQ API Token is listed on your IBM dashboard at https://quantum-computing.ibm.com/.

from qiskit import QuantumCircuit, transpile
from qiskit_ibm_runtime import QiskitRuntimeService, Session, SamplerV2 as Sampler
import time

# Save / Load Credentials (csc431 used as example project)
QiskitRuntimeService.save_account(channel="ibm_quantum", token="API TOKEN GOES HERE", overwrite=True)
service = QiskitRuntimeService(channel="ibm_quantum", instance="ibm-q-ornl/ornl/csc431")

# Get backend (csc431 used as example project)
#backend = service.backend("backend_name_here", instance="ibm-q-ornl/ornl/csc431")
backend = service.least_busy(simulator=False, operational=True)

# Build circuit
circuit = QuantumCircuit(2, 2)
circuit.h(0)
circuit.cx(0, 1)
circuit.measure([0,1], [0,1])
compiled_circuit = transpile(circuit, backend)

# Submit job
sampl = Sampler(mode=backend)
job = sampl.run([compiled_circuit],shots=1000)

# Wait for job to complete
while str(job.status()) != "DONE":
    print("Job status is", job.status() )
    time.sleep(30)
print("Job status is", job.status() )

# Gather results
result = job.result()
probs = result[0].data.c.get_counts()

print('PubResult: ',result[0])
print("\nProbabilities for 00 and 11 are:",probs)

# Draw the circuit
print(circuit.draw())
from qiskit import QuantumCircuit, transpile
from qiskit_ibm_runtime import Session, SamplerV2 as Sampler
from qiskit_ibm_runtime.fake_provider import FakeManilaV2
from qiskit_aer import AerSimulator

# Get local backend
#backend = FakeManilaV2()
backend = AerSimulator()

# Build circuit
circuit = QuantumCircuit(2, 2)
circuit.h(0)
circuit.cx(0, 1)
circuit.measure([0,1], [0,1])
compiled_circuit = transpile(circuit, backend)

# Run the sampler job locally using AerSimulator or "Fake" Backend.
# Session syntax is supported but ignored because local mode doesn't support sessions.
with Session(backend=backend) as session:
    sampler = Sampler(mode=session)
    result = sampler.run([compiled_circuit],shots=1000).result()

probs = result[0].data.c.get_counts()

print('PubResult: ',result[0])
print("\nProbabilities for 00 and 11 are:",probs)

# Draw the circuit
print(circuit.draw())

After running the above script(s), you should see something similar to:

Probabilities for 00 and 11 are: [{0: 0.51, 3: 0.49}]
     ┌───┐     ┌─┐
q_0: ┤ H ├──■──┤M├───
     └───┘┌─┴─┐└╥┘┌─┐
q_1: ─────┤ X ├─╫─┤M├
          └───┘ ║ └╥┘
c: 2/═══════════╩══╩═
                0  1

Quantinuum

The tket framework is a software platform for the development and execution of gate-level quantum computation, providing state-of-the-art performance in circuit compilation. Pytket is a python module for interfacing with tket, and installing the Quantinuum pytket extension allows pytket circuits to be executed on Quantinuum’s quantum devices.

For more information please see:

Latest script tests

python

pytket

pytket-quantinuum

3.11.9

1.31.1

0.37.0

from pytket.circuit import Circuit
from pytket.extensions.quantinuum import QuantinuumBackend
from pytket.backends import ResultHandle
from pytket.backends.backendresult import BackendResult
import json
import time

# Build the circuit
circuit = Circuit(2, name="Bell Test")
circuit.H(0)
circuit.CX(0, 1)
circuit.measure_all()

# Choose your machine and login (e.g., H1-1E and CSC431 group)
machine = "H1-1E"
backend = QuantinuumBackend(device_name=machine, group="CSC431")
backend.login()

# Status of desired machine
print(machine, "status:", QuantinuumBackend.device_state(device_name=machine))

# List available devices
print([x.device_name for x in QuantinuumBackend.available_devices()])

# Compile circuit
compiled_circuit = backend.get_compiled_circuit(circuit, optimisation_level=0)
n_shots = 100

# Estimate the cost (H1-1SC, H2-1SC are syntax checkers for H1-1 and H2-1)
# Causes problems when on an HPC compute node w/ proxy settings -- advised to run separately on login node w/o proxy
#backend.cost(compiled_circuit, n_shots=n_shots, syntax_checker="H1-1SC")

# Run the circuit
handle = backend.process_circuit(compiled_circuit, n_shots=n_shots)
print(handle)

# Save your job handle
with open("pytket_example_job_handle.json", "w") as file:
    json.dump(str(handle), file)

# Check status of job (loop is necessary on an HPC compute node w/ proxy settings or else timeouts occur)
while str( backend.circuit_status(handle).status ) != "StatusEnum.COMPLETED":
    status = backend.circuit_status(handle)
    print("Job status is", status.status )
    time.sleep(10)
status = backend.circuit_status(handle)
print("Job status is", status )

# Retrieve and print results
with open("pytket_example_job_handle.json") as file:
    handle_str = json.load(file)
handle = ResultHandle.from_str(handle_str)
result = backend.get_result(handle)
print(result.get_distribution())
print(result.get_counts())

# Save results
with open("pytket_example.json", "w") as file:
    json.dump(result.to_dict(), file)

# Not necesary here, but including syntax
# Load results
with open("pytket_example.json") as file:
    data = json.load(file)
result = BackendResult.from_dict(data)

After running the above script, you should see something similar to:

{(0, 0): 0.57, (1, 1): 0.43}
Counter({(0, 0): 57, (1, 1): 43})

IonQ

IonQ has many pathways to accessing their quantum backends. Although the script below uses the Qiskit IonQ Provider , details on how to use Cirq, PennyLane, XACC, and more can be found in the IonQ Documentation . One useful resource that showcases multiple access pathways is their Hello Many Worlds tutorial.

For more information please see:

Latest script tests

python

qiskit

qiskit-ionq

3.11.9

1.2.0

0.5.4

from qiskit import QuantumCircuit
from qiskit_ionq import IonQProvider
import os

# Set your credentials (can also set this externally)
os.environ["IONQ_API_KEY"] = "API KEY GOES HERE"

# Load your IonQ credentials and list backends
provider = IonQProvider()
print(provider.backends())

# Run on "ionq_simulator", "ionq_qpu", "simulator", "qpu.harmony", "qpu.aria-1", "qpu.aria-2"
backend = provider.get_backend("simulator")

# Create a basic Bell State circuit:
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
qc.measure([0, 1], [0, 1])

# Run the circuit on IonQ's platform:
job = backend.run(qc, shots=10000)

# Print results
print(job.get_counts())
print(job.get_probabilities())

After running the above script, you should see something similar to:

{'00': 4933, '11': 5067}
{'00': 0.5, '11': 0.5}

Rigetti

PyQuil allows you to build and execute Quil programs to run on Rigetti QPUs and QVMs. To target QPUs/QVMs locally in a scripting environment, you’ll need to install the Quil SDK locally. An example of how to install the Quil SDK at OLCF in an HPC environment is shown on our Quantum Software on HPC Systems Page.

For more information please see:

Note

To be able to authenticate to Rigetti via the CLI, you’ll first need to download your API keys from https://qcs.rigetti.com/auth/token.

Latest script tests

python

pyquil

3.11.9

4.14.2

from pyquil import get_qc, Program
from pyquil.gates import H, CNOT, MEASURE
from pyquil.quilbase import Declare
import time
# Set up your Quantum Quil Program (in this case, a "Bell State")
program = Program(
    Declare("ro", "BIT", 2),
    H(0),
    CNOT(0, 1),
    MEASURE(0, ("ro", 0)),
    MEASURE(1, ("ro", 1)),
).wrap_in_numshots_loop(10)

# Request your QVM or QPU (e.g., Ankaa-2 QVM)
qc = get_qc("Ankaa-2-qvm")

# Compile, run, and print results
# NOTE When using actual QPUs:
# Have run into timeout issues when trying to query results too quickly after compiling when commands are on separate lines
# But in theory they can be on separate lines (just may need to play around with the timeout parameter)
print( qc.run( qc.compile(program) ).get_register_map().get("ro") )

With the way pyQuil works, you need to launch its compiler server, launch the virtual machine / simulator QVM server, and then launch your pyQuil Python program on the same host. Running a Python script will ping and utilize both the compiler and QVM servers.

Thus, the script can be run like this:

(ENV_NAME)$ quilc -P -S > quilc.log 2>&1 & qvm -S > qvm.log 2>&1 & python3 script.py ; kill $(jobs -p)

After running the above script, you should see something similar to:

[[1 1]
 [0 0]
 [1 1]
 [0 0]
 [1 1]
 [0 0]
 [1 1]
 [1 1]
 [1 1]
 [0 0]]