Quantum Software on HPC Systems
Overview
This page describes how a user can successfully install specific quantum software tools to run on select OLCF HPC systems. This allows a user to utilize our systems to run a simulator, or even as a “frontend” to a vendor’s quantum machine (“backend”).
For most of these instructions, we use conda environments. For more detailed information on how to use Python modules and conda environments on OLCF systems, see our Python on OLCF Systems page, and our Conda Basics guide.
Example Python scripts for each QCUP vendor are located at our new Hello QCUP Scripts page.
Warning
Currently, the install steps listed below only work for our x86_64 based systems (Andes, Frontier, etc.). The steps can be explored on Summit, but – due to Summit’s Power architecture – is not recommended or guaranteed to work.
Note
Working installations are not limited to versions shown below. Versions for libraries listed below are what was tested most recently.
Qiskit
Qiskit is open-source software for working with quantum computers at the level of circuits, pulses, and algorithms. Installing Qiskit provides access to the IBM Quantum backends by default, but installing additional provider plugins enables access to other vendors’ backends as well.
IBM Quantum
Installing qiskit
and qiskit-ibm-runtime
provides access to IBM Quantum backends.
Since cloud-based simulators have been deprecated, installing qiskit-aer
enables access to local simulators.
See these links for more information:
module load gcc/9.3.0
module load python
conda create -n ENV_NAME python=3.11 -c conda-forge
source activate ENV_NAME
conda install qiskit=1.2.0 qiskit-ibm-runtime=0.28.0 qiskit-aer=0.14.2 psutil -c conda-forge
module load PrgEnv-gnu/8.5.0
module load miniforge3/23.11.0-0
conda create -n ENV_NAME python=3.11 -c conda-forge
source activate ENV_NAME
conda install qiskit=1.2.0 qiskit-ibm-runtime=0.28.0 qiskit-aer=0.14.2 psutil -c conda-forge
Qiskit IonQ Provider
The qiskit-ionq
extension can be installed to access IonQ QPUs through Qiskit.
See these links for more information:
module load gcc/9.3.0
module load python
conda create -n ENV_NAME python=3.11 numpy=1.26.4 scipy -c conda-forge
source activate ENV_NAME
pip install qiskit==1.2.0 qiskit-ionq==0.5.4 --no-cache-dir
module load PrgEnv-gnu/8.5.0
module load miniforge3/23.11.0-0
conda create -n ENV_NAME python=3.11 numpy=1.26.4 scipy -c conda-forge
source activate ENV_NAME
pip install qiskit==1.2.0 qiskit-ionq==0.5.4 --no-cache-dir
IQM Qiskit Plugin
The qiskit-iqm
plugin can be installed to access IQM’s backends through Qiskit.
See these links for more information:
module load gcc/9.3.0
module load python
conda create -n ENV_NAME python=3.11 -c conda-forge
source activate ENV_NAME
pip install qiskit-iqm==15.5 --no-cache-dir
module load PrgEnv-gnu/8.5.0
module load miniforge3/23.11.0-0
conda create -n ENV_NAME python=3.11 -c conda-forge
source activate ENV_NAME
pip install qiskit-iqm==15.5 --no-cache-dir
PyQuil/Forest SDK (Rigetti)
Quil is the Rigetti-developed quantum instruction/assembly language. PyQuil is a Python library for writing and running quantum programs using Quil.
Installing pyQuil requires installing the Forest SDK. To quote Rigetti: “pyQuil, along with quilc, the QVM, and other libraries, make up what is called the Forest SDK”. Because we don’t have Docker functionality and due to normal users not having sudo privileges, this means that you will have to install the SDK via the “bare-bones” method. The general info below came from:
https://docs.rigetti.com/qcs/getting-started/set-up-your-environment/installing-locally
https://pyquil-docs.rigetti.com/en/stable/getting_started.html#run-your-first-program
The bare-bones installation only contains the executable binaries and manual pages, and doesn’t contain any of the requisite dynamic libraries. As such, installation doesn’t require administrative or sudo privileges. This method of installation requires one, through whatever means, to install shared libraries for BLAS, LAPACK, libffi, and libzmq3. Some download methods are listed here:
Lapack (with BLAS) download: http://www.netlib.org/lapack/
libffi download:
Older versions: https://sourceware.org/ftp/libffi/
ZMQ download: https://github.com/zeromq/libzmq/releases
Forest SDK download: https://qcs.rigetti.com/sdk-downloads
PyQuil - Installing Dependencies
Below is an example script that will download, build, and install all dependencies for pyQuil. Before running the script, make sure to have these modules loaded:
module load gcc/9.3.0 cmake
module load PrgEnv-gnu/8.5.0 cmake
Warning
By default this will install the libraries into your $HOME
directory.
Also note that you will be prompted where to install the Forest SDK while the script is executing (just press enter to stick with the default $HOME
location when prompted).
#!/bin/bash
set -e
WORKDIR=${HOME}/quil_build_dir
mkdir -p ${WORKDIR} && cd ${WORKDIR}
VERSION_LAPACK="3.10.0"
VERSION_LIBFFI="3.4.6"
VERSION_ZEROMQ="4.3.5"
VERSION_FOREST="2.23.0"
URL_LAPACK="https://github.com/Reference-LAPACK/lapack/archive/refs/tags/v${VERSION_LAPACK}.tar.gz"
URL_LIBFFI="https://github.com/libffi/libffi/releases/download/v3.4.6/libffi-${VERSION_LIBFFI}.tar.gz"
URL_ZEROMQ="https://github.com/zeromq/libzmq/releases/download/v4.3.5/zeromq-${VERSION_ZEROMQ}.tar.gz"
URL_FOREST="https://downloads.rigetti.com/qcs-sdk/forest-sdk-${VERSION_FOREST}-linux-barebones.tar.bz2"
NAME_LAPACK="lapack-${VERSION_LAPACK}"
NAME_LIBFFI="libffi-${VERSION_LIBFFI}"
NAME_ZEROMQ="zeromq-${VERSION_ZEROMQ}"
NAME_FOREST="forest-sdk-${VERSION_FOREST}-linux-barebones"
MACHINE=$(uname -m)
INSTALL_DIR_LAPACK=$HOME/rigetti/${NAME_LAPACK}_${MACHINE}
INSTALL_DIR_LIBFFI=$HOME/rigetti/${NAME_LIBFFI}_${MACHINE}
INSTALL_DIR_ZEROMQ=$HOME/rigetti/${NAME_ZEROMQ}_${MACHINE}
INSTALL_DIR_FOREST=$HOME/rigetti/forest-sdk_${VERSION_FOREST}-linux-barebones
# download and unzip the dependencies if they don't exist
pyquil_lib_get() {
local gz_name="${1}.tar.gz"
if [[ -f "${gz_name}" ]]; then
# continue
echo "${1} already downloaded"
else
curl -L -o "${gz_name}" "${2}"
fi
if [[ -d "${1}" ]]; then
echo "${1} already unzipped"
else
tar -xf "$gz_name"
fi
}
pyquil_lib_get $NAME_LAPACK $URL_LAPACK
pyquil_lib_get $NAME_LIBFFI $URL_LIBFFI
pyquil_lib_get $NAME_ZEROMQ $URL_ZEROMQ
if [[ -f "${NAME_FOREST}.tar.bz2" ]]; then
echo "forest already downloaded"
else
curl -L -o "${NAME_FOREST}.tar.bz2" "${URL_FOREST}"
fi
if [[ -d "${NAME_FOREST}" ]]; then
echo "forest already unzipped"
else
tar -xf "${NAME_FOREST}.tar.bz2"
fi
# install zmq
cd $NAME_ZEROMQ
./configure --prefix="${INSTALL_DIR_ZEROMQ}/" --with-libsodium=no
make
make install
cd $WORKDIR
# install libffi
cd $NAME_LIBFFI
./configure --prefix=$INSTALL_DIR_LIBFFI
make
make install
mkdir -p $INSTALL_DIR_LIBFFI/include
cp include/ffi*.h $INSTALL_DIR_LIBFFI/include/
# only necessary when using libffi==3.4
if [[ ! -f "$INSTALL_DIR_LIBFFI/lib64/libffi.so.6" ]]; then
ln -s $INSTALL_DIR_LIBFFI/lib64/libffi.so.8 $INSTALL_DIR_LIBFFI/lib64/libffi.so.6
fi
cd $WORKDIR
# install lapack
cd $NAME_LAPACK
mkdir -p build
cd build
cmake \
-DBUILD_SHARED_LIBS=ON \
-DCMAKE_INSTALL_LIBDIR=$INSTALL_DIR_LAPACK \
-DCMAKE_Fortran_COMPILER=gfortran \
-DCMAKE_C_COMPILER=gcc \
..
cmake --build . -j --target install
cd $WORKDIR
# install forest sdk
cd $NAME_FOREST
./${NAME_FOREST}.run
echo ""
echo "Export these variables before running pyquil, the qvm, or quilc:"
echo "export LD_LIBRARY_PATH=\"${INSTALL_DIR_LAPACK}:\$LD_LIBRARY_PATH\""
echo "export LD_LIBRARY_PATH=\"${INSTALL_DIR_LIBFFI}/lib64:\$LD_LIBRARY_PATH\""
echo "export LD_LIBRARY_PATH=\"${INSTALL_DIR_ZEROMQ}/lib:\$LD_LIBRARY_PATH\""
echo "export PATH=\"${INSTALL_DIR_FOREST}:\$PATH\""
echo ""
echo "You can clean up and remove ${WORKDIR} if desired"
To verify your installation, try calling quilc
and qvm
(after exporting your $PATH
and $LD_LIBRARY_PATH
with your newly installed libraries):
$ quilc --version
1.23.0 [e6c0939]
$ qvm --version
1.17.1 [cf3f91f]
Finally, you are ready to install pyQuil:
module load gcc/9.3.0
module load python
conda create -n ENV_NAME python=3.11 numpy=1.26.4 scipy -c conda-forge
source activate ENV_NAME
pip install pyquil==4.14.2 pyquil-grpc-web==4.14.2 typing_extensions --no-cache-dir
module load PrgEnv-gnu/8.5.0
module load miniforge3/23.11.0-0
conda create -n ENV_NAME python=3.11 numpy=1.26.4 scipy -c conda-forge
source activate ENV_NAME
pip install pyquil==4.14.2 pyquil-grpc-web==4.14.2 typing_extensions --no-cache-dir
PyQuil - Setting up Servers
Now that everything is installed properly, the rest of the instructions follow Rigetti’s Documentation .
With the way pyQuil works, you need to launch its compiler server, launch the virtual machine / simulator QVM server, and then launch your pyQuil Python program on the same host. Running a Python script will ping and utilize both the compiler and QVM servers. As a proof of concept, this has been done on a single login node and the steps are outlined below.
Using your already created ENV_NAME
virtual environment (outlined above):
(ENV_NAME)$ quilc -P -S > quilc.log 2>&1 & qvm -S > qvm.log 2>&1 & python3 script.py ; kill $(jobs -p)
PennyLane
PennyLane is a cross-platform Python library for programming quantum computers. Its differentiable programming paradigm enables the execution and training of quantum programs on various backends.
General information of how to install and use PennyLane can be found here:
On our systems, the install method is relatively simple:
module load gcc/9.3.0
module load python
conda create -n ENV_NAME python=3.11 pennylane -c conda-forge
source activate ENV_NAME
module load PrgEnv-gnu/8.5.0
module load miniforge3/23.11.0-0
conda create -n ENV_NAME python=3.11 pennylane -c conda-forge
source activate ENV_NAME
Pytket
The tket framework is a software platform for the development and execution of gate-level quantum computation, providing state-of-the-art performance in circuit compilation. Pytket is a python module for interfacing with tket, and installing the Quantinuum pytket extension allows pytket circuits to be executed on Quantinuum’s quantum devices.
For more information please see:
module load gcc/9.3.0
module load python
conda create -n ENV_NAME python=3.11 numpy=1.26.4 -c conda-forge
source activate ENV_NAME
pip install pytket==1.31.1 pytket-quantinuum==0.37.0 scipy --no-cache-dir
module load PrgEnv-gnu/8.5.0
module load miniforge3/23.11.0-0
conda create -n ENV_NAME python=3.11 numpy=1.26.4 scipy -c conda-forge
source activate ENV_NAME
pip install pytket==1.31.1 pytket-quantinuum==0.37.0 --no-cache-dir
CUDA-Q
CUDA-Q is a software development kit for quantum and integrated quantum-classical programming. It consists of the CUDA-Q intermediate representation and compiler toolchain, language expressions in Python and C++, and the ability to execute jobs either on GPUs accelerated via cuQuantum or QPUs spanning superconducting, ion traps, photonics, and other qubit modalities. As high-performance computing (HPC) trends towards heterogeneous architectures, CUDA-Q enables a dynamic workflow with a kernel-based programming model allowing users to offload onto various backends leading to scalable hybrid applications.
Additionally, CUDA-Q is interoperable with modern parallel programming models such as MPI, OpenMP, etc., allowing it to leverage parallelization within and across classical compute nodes. CUDA Quantum also has a user-friendly Python API. We will present results from simulations that leverage the multi-node multi-gpu simulations in quantum chemistry, quantum condensed matter physics, high energy physics, quantum machine learning, computational fluid dynamics at scale.
For more information please see:
Documentation: https://nvidia.github.io/cuda-quantum/latest/index.html
GitHub Repository: https://github.com/NVIDIA/cuda-quantum
General Workshops Repository: https://github.com/cudaq-libraries/workshops/tree/202408-cudaq
ORNL (Ascent) Workshop: https://github.com/justinlietz/ornl-cudaq-workshop
CUDA-Q is available on Summit via the cudaq
module.
module use /gpfs/alpine2/world-shared/stf007/msandov1/modulefiles
module load cudaq/0.8.0
Batch Jobs
Although lightweight code can be run on the login nodes, more computationally intensive code should be run on the compute nodes through the use of a batch job. See the relevant HPC System Guide for more examples and best practices when running on the compute nodes for a given system.
For the compute nodes to be able to access external URLs (e.g., trying to connect to IBM backends), you’ll have to use proxy settings in your batch script:
export all_proxy=socks://proxy.ccs.ornl.gov:3128/
export ftp_proxy=ftp://proxy.ccs.ornl.gov:3128/
export http_proxy=http://proxy.ccs.ornl.gov:3128/
export https_proxy=http://proxy.ccs.ornl.gov:3128/
export no_proxy='localhost,127.0.0.0/8,*.ccs.ornl.gov'
When using Python environments with SLURM, it is always recommended to submit a
batch script using the export=NONE
flag to avoid $PATH
issues and use
unset SLURM_EXPORT_ENV
in your job script (before calling srun
);
however, this means that previously set environment variables are NOT
passed into the batch job, so you will have to set them again (and load modules
again) if they are required by your workflow. Alternatively, you can try
submitting your batch script from a fresh login shell.
$ sbatch --export=NONE submit.sl
Below are example batch scripts for running on Andes and Frontier:
#!/bin/bash
#SBATCH -A ABC123
#SBATCH -J job_name
#SBATCH -N 1
#SBATCH -t 0:05:00
#SBATCH -p batch
unset SLURM_EXPORT_ENV
cd $SLURM_SUBMIT_DIR
date
# Set proxy settings so compute nodes can reach internet (required when not using a simulator)
export all_proxy=socks://proxy.ccs.ornl.gov:3128/
export ftp_proxy=ftp://proxy.ccs.ornl.gov:3128/
export http_proxy=http://proxy.ccs.ornl.gov:3128/
export https_proxy=http://proxy.ccs.ornl.gov:3128/
export no_proxy='localhost,127.0.0.0/8,*.ccs.ornl.gov'
# Load python module and virtual environment
module load python
source activate ENV_NAME
# For software like Qiskit,PennyLane,Pytket
#python3 script.py
# For pyQuil
#export LD_LIBRARY_PATH="/ccs/home/YOUR_USERNAME/lapackblas:$LD_LIBRARY_PATH"
#export LD_LIBRARY_PATH="/ccs/home/YOUR_USERNAME/ffi/lib64:$LD_LIBRARY_PATH"
#export LD_LIBRARY_PATH="/ccs/home/YOUR_USERNAME/zmq/lib:$LD_LIBRARY_PATH"
#export PATH="/ccs/home/YOUR_USERNAME/rigetti/forest-sdk_2.23.0-linux-barebones:$PATH"
#quilc -P -S > quilc.log 2>&1 & qvm -S > qvm.log 2>&1 & python3 script.py ; kill $(jobs -p)
#!/bin/bash
#SBATCH -A ABC123
#SBATCH -J job_name
#SBATCH -N 1
#SBATCH -t 0:05:00
#SBATCH -p batch
unset SLURM_EXPORT_ENV
cd $SLURM_SUBMIT_DIR
date
# Set proxy settings so compute nodes can reach internet (required when not using a simulator)
export all_proxy=socks://proxy.ccs.ornl.gov:3128/
export ftp_proxy=ftp://proxy.ccs.ornl.gov:3128/
export http_proxy=http://proxy.ccs.ornl.gov:3128/
export https_proxy=http://proxy.ccs.ornl.gov:3128/
export no_proxy='localhost,127.0.0.0/8,*.ccs.ornl.gov'
# Load python module and virtual environment
module load miniforge3/23.11.0-0
source activate ENV_NAME
# For software like Qiskit,PennyLane,Pytket
#python3 script.py
# For pyQuil
#export LD_LIBRARY_PATH="/ccs/home/YOUR_USERNAME/lapackblas:$LD_LIBRARY_PATH"
#export LD_LIBRARY_PATH="/ccs/home/YOUR_USERNAME/ffi/lib64:$LD_LIBRARY_PATH"
#export LD_LIBRARY_PATH="/ccs/home/YOUR_USERNAME/zmq/lib:$LD_LIBRARY_PATH"
#export PATH="/ccs/home/YOUR_USERNAME/rigetti/forest-sdk_2.23.0-linux-barebones:$PATH"
#quilc -P -S > quilc.log 2>&1 & qvm -S > qvm.log 2>&1 & python3 script.py ; kill $(jobs -p)